Project Name: Katanning land resources survey

Project Code: KLC Site ID: 0191 Observation ID: 1

Agency Name: Agriculture Western Australia

Site Information

Desc. By: Heather Percy Locality:

Date Desc.:11/05/92Elevation:288 metresMap Ref.:Rainfall:No Data

Northing/Long.: 6271560 AMG zone: 50 Runoff: No Data
Easting/Lat.: 535100 Datum: AGD84 Drainage: Moderately well drained

<u>Geology</u>

ExposureType: Auger boring Conf. Sub. is Parent. Mat.: No Data Geol. Ref.: No Data Substrate Material: No Data

Land Form

Rel/Slope Class: Undulating low hills 30-90m 3-10% Pattern Type: Low hills

Morph. Type:FlatRelief:40 metresElem. Type:Valley flatSlope Category:No DataSlope:0 %Aspect:No Data

Soft Erosion: (wind); (sheet) (rill) (gully)

Soil Classification

Australian Soil Classification: Mapping Unit: N/A N/A Principal Profile Form: Dy5.41 ASC Confidence: Great Soil Group: N/A

Confidence level not specified

Site No effective disturbance other than grazing by hoofed animals

Vegetation:
Surface Coarse
No surface

<u>Surface Coarse</u> No surface coarse fragments; No surface coarse fragments

Profile

A11 0 - 0.15 m Brown (10YR5/3-Moist); , 0-0%; Sand; Single grain grade of structure; Moderately moist;

Loose

consistence; Field pH 6 (Raupach); Clear, Smooth change to -

A12 0.15 - 0.25 m

consistence;

Light grey (10YR7/2-Moist); , 0-0%; Sand; Single grain grade of structure; Moist; Loose

Field pH 6 (Raupach); Abrupt change to -

A2e 0.25 - 0.45 m

Moist; Loose

Pinkish yellow (7.5YR8/2-Moist); , 0-0%; Coarse sand; Single grain grade of structure;

consistence; Field pH 6.5 (Raupach); Abrupt change to -

B21 0.45 - 0.7 m

Mottles, 10YR66,

Light brownish grey (10YR6/2-Moist); Mottles, 5YR58, 10-20%, 5-15mm, Prominent;

fabric; Moderately

10-20%, 5-15mm, Prominent; Medium clay; Strong grade of structure; Smooth-ped

.....

moist; Firm consistence; Field pH 6 (Raupach); Clear change to -

B22 0.7 - 0.8 m 20-50% . 5Pale red (2.5YR6/2-Moist); Mottles, 10R46, 20-50%, 5-15mm, Distinct; Mottles, 7.5YR68,

20 0070,0

15mm, Distinct; Medium clay; Strong grade of structure; Smooth-ped fabric; Dry; Firm

consistence; Field

pH 4.5 (Raupach);

Morphological Notes

A11 Top 5cm severely repellant and pH is approx. 5.0

B21 Sampled for CEC

B22 Top 5cm of this layer was moist

Observation Notes

Site Notes

B21 (L4) sampled for ESP and CEC to check classification

Project Name: Katanning land resources survey

Project Code: KLC Site ID: 0191 Observation 1

Agency Name: Agriculture Western Australia

Labora	tory T	est R	lesul	ts:
--------	--------	-------	-------	-----

рН	1:5 EC						CEC		ECEC	ESP
	dS/m	- Cu	9	.,						%
4.59B										
4.91B										
5.2B 5.8H	89B	1.04H	4.25	0.19	2.74	0.09J		3	3.22D)
5.2B 5.8H	89B	1.04H	4.25	0.19	2.74	0.09J		8	3.220)
CaCO3	Organic C	Avail. P	Total P	Total N	Total K	Bulk Density	GV F	Particle CS	Size FS	Analysis Silt
%	%	mg/kg	%	%	%	Mg/m3			%	
								60I		7
								601		7
	4.59B 4.91B 5.3B 5.2B 5.8H 5.2B 5.8H CaCO3	dS/m 4.59B 4.91B 5.3B 5.2B 89B 5.8H 5.2B 89B 5.8H CaCO3 Organic C Clay	Ca dS/m 4.59B 4.91B 5.3B 5.2B 89B 1.04H 5.8H 5.2B 89B 1.04H 5.8H CaCO3 Organic Avail. C P Clay	Ca Mg dS/m 4.59B 4.91B 5.3B 5.2B 89B 1.04H 4.25 5.8H 5.2B 89B 1.04H 4.25 5.8H CaCO3 Organic C P P Clay Total P	Ca Mg K dS/m 4.59B 4.91B 5.3B 5.2B 89B 1.04H 4.25 0.19 5.8H 5.2B 89B 1.04H 4.25 0.19 5.8H CaCO3 Organic Avail. Total Total C P P N	Ca Mg K Na Cmol (+) 4.59B 4.91B 5.3B 5.2B 89B 1.04H 4.25 0.19 2.74 5.8H 5.2B 89B 1.04H 4.25 0.19 2.74 5.8H CaCO3 Organic Avail. Total Total C P P N K	4.59B 4.91B 5.3B 5.2B 89B 1.04H 4.25 0.19 2.74 0.09J 5.8H 5.2B 89B 1.04H 4.25 0.19 2.74 0.09J 5.8H CaCO3 Organic C P P N K Density Clay	Ca Mg K Na Acidity Cmol (+)/kg 4.59B 4.91B 5.3B 5.2B 89B 1.04H 4.25 0.19 2.74 0.09J 5.8H 5.2B 89B 1.04H 4.25 0.19 2.74 0.09J 5.8H CaCO3 Organic Avail. Total Total Bulk F C P P N K Density GV	Ca Mg K Na Acidity Cmol (+)/kg 4.59B 4.91B 5.3B 5.2B 89B 1.04H 4.25 0.19 2.74 0.09J 8 5.8H 5.2B 89B 1.04H 4.25 0.19 2.74 0.09J 8 5.8H CaCO3 Organic Avail. Total Total Bulk Particle C P P N K Density GV CS Clay % % mg/kg % % % Mg/m3	Ca Mg K Na Acidity Cmol (+)/kg 4.59B 4.91B 5.3B 5.2B 89B 1.04H 4.25 0.19 2.74 0.09J 8.22D 5.8H 5.2B 89B 1.04H 4.25 0.19 2.74 0.09J 8.22D 5.8H CaCO3 Organic Avail. Total Total Bulk Particle Size C P P N K Density GV CS FS Clay % % mg/kg % % % Mg/m3 %

Laboratory Analyses Completed for this profile

15_NR_BSa	Exchangeable bases (Ca++) - meq per 100g of soil - Auto calculated from available
15_NR_CMR	Exchangeable bases (Ca/Mg ratio) - Not recorded
15E1_AL	Exchangeable AI - by compulsive exchange, no pretreatment for soluble salts
15E1_CA	Exchangeable bases (Ca2+,Mg2+,Na+,K+) by compulsive exchange, no pretreatment for soluble
salts	
15E1_K	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble salts
15E1_MG	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble salts
15E1_MN	Exchangeable bases (Mn2+) by compulsive exchange, no pretreatment for soluble salts
15E1_NA	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble salts
15J_BASES	Sum of Bases
15N1_b	Exchangeable sodium percentage (ESP) - Auto calculated from available using Sum of Cations
3_NR	Electrical conductivity or soluble salts - Not recorded
4_NR	pH of soil - Not recorded
4B1	pH of 1:5 soil/0.01M calcium chloride extract - direct
P10_gt2m	> 2mm particle size analysis, (method not recorded)
P10_NR_C	Clay (%) - Not recorded
P10_NR_S	Sand (%) - Not recorded
P10_NR_Z	Silt (%) - Not recorded